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Experimental determinations of the resolution function of a neutron time-of-flight diffractometer are 
compared with computations performed within and beyond the normal approximation. 

Introduction 

For time-of-flight (TOF) neutron diffractometry, the 
resolution function R(X) defined in the scattering- 
vector Q space has been calculated in the preceding 
paper (Stoica, 1975b) which we shall refer to as paper 
II. The method used there has been described in 
paper I of this series (Stoica, 1975a). This method has 
two salient features in comparison with the usual tech- 
nique of computing resolution functions in neutron 
spectrometry (e.g. Cooper & Nathans, 1967, 1968). 
Firstly, it operates equally well with spatial and angular 
distributions, so that spatial effects can be accounted 
for (these effects are lost in the usual technique which 
operates with angular distributions only). Secondly, it 
gives a general prescription for calculating the resolu- 
tion-function moments of any order. The normal 
approximation is obtained as the simplest approxima- 
tion involving second-order moments only. By using 
higher-order moments better approximations can be 
constructed without difficulty. 

In this paper experimental determinations of the 
TOF diffractometer resolution function are presented 
and discussed in the context of the mentioned peculia- 
rities of the computation method. 

1. The experimental arrangement 

The measurements were performed in a TOF diffrac- 
tion set-up mounted at the pulsed reactor IBR-30 in 
Dubna on the KDSOG-1 spectrometer. The neutron 
beam was extracted at an angle of 12 ° from the surface 
of a room-temperature water moderator of 30 x 40 cm 
area. The sample goniometer was located at a distance 
L1--30 m from the moderator. The detector of 3 cm 
diameter was mounted vertically at a distance L2-- 1.2 m 
from the sample. No Soller collimators were used. 

The parameters entering the resolution calculations 
are the geometry of the experimental arrangement, 
presented above, and the time dispersion of the thermal 
neutron pulse as a function of neutron energy. Concern- 
ing the latter, there are no explicit theoretical predic- 

tions for the intermediate energy range of interest and 
one has to rely on experimental determinations. 

The thermal-neutron pulse is a convolution of the 
fast-neutron pulse (of dispersion a~) with the modera- 
tor response, so that its dispersion (t 2) has the form 

2 where 2 is the time dispersion of the (t2)=O~+Om Om 
moderator response function. To determine the energy 

2 the experimental data of Ishmaev, dependence of am 
Sadikov & Chernyshov (1970, 1973) obtained on 
mockups of the IBR-30 moderators were used. In the 
search for an empirical interpolation formula for use 
in the computations, it was found that the available 
experimental data can be approximated by expressions 
of the form 0"m=Z0[1 - e x p  (-2/20)] where 2 is the neu- 
tron wavelength and z0 and 2o are adjustable param- 
eters (these expressions have correct asymptotic be- 
haviour: in the limit 2 --+ 0, in the slowing-down tran- 
sient region, am is proportional to 2, while at large wave- 
lengths, where diffusion becomes the dominant process 
in the moderator, am approaches a constant value). By 
fitting the data corresponding to the moderator used in 
the experiment the values z0 = 64 /tsec and 20= 1.6 A 
were obtained. To determine the fast-neutron pulse 
dispersion the diffraction pattern of a powder Ni 
sample was measured under nearly focusing conditions 
(i.e. the widths of the Bragg peaks were dominated by 
the time component of the resolution). By fitting the 
corrected dispersions (geometry contribution sub- 
tracted) of the resolved peaks with the expression 

2+a~ the value a,=65 /zsec was obtained (t2)=o, 
(this figure actually includes a contribution due to the 
jitter of the time-analyser starting purse with respect to 
the fast-neutron pulse). More information on the 
experimental procedure and computation programs 
may be found in a detailed report (Bajorek, Gheorghiu, 
Korneev, Kula, Popovici & Stoica, 1974). 

2. Computations 

The normal approximation 
In the normal approximation the actual resolution 

function is replaced by the three-dimensional Gaussian 
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RG(X) having the same covariance matrix: 

Ro(X) = Ro I{M, AI '/~ 3 (2n)a/2 exp ( - ½  ~ MijXiXj). (1) 
i , J = l  

The explicit expressions for the covariance matrix 
elements (X~Xj) are given in paper II and can be used 
as such in computations. The computation program is 
more flexible, however, if the matrix language is used 
throughout. The computations reported below were 
performed with a program based on standard sub- 
routines of matrix multiplication and inversion. The 
covariance matrix M -~ was computed through the 
relation M-I=T2T~EzT[T~ where E2 is the covariance 
matrix of the original parameters (see paper II) and the 
matrices T~ and T2 are defined by the relations given in 
Appendices 1 and 2 of paper II. This procedure has the 
additional advantage of allowing the inclusion at an 
intermediate stage of the case when Soller collimators 
and/or neutron guides are used. 

Beyond the normal approximation 
There are two major reasons for the resolution func- 

tion to deviate from the Gaussian form in the case under 
consideration. Firstly, the shape of the thermal neutron 
pulse is asymmetric. The asymmetry is described 
quantitatively by the third-order moment (ta). A 
non-zero value of (t  a) implies a non-zero third-order 
moment (X~) of the resolution function. Secondly, the 
shapes of the moderator, sample and detector are only 
approximately described by Gaussian distributions of 
the corresponding coordinates in real space. The actual 
distributions have flat maxima and this implies a 
flattening of the resolution-function maximum. The 
effect is more pronounced in the direction of the X3 
coordinate, because of the considerable vertical extent 
of the moderator and detector. To account for this 
effect the fourth-order moments (z~) of the actual dis- 
tributions should be included in the calculations 
(h = 0, 1,2 refer to the moderator, sample and detector 
respectively). These moments will contribute to the 
fourth moment (X 4) only. 

The above discussion suggests that the deviations of 
the resolution function from the Gaussian form could 
be characterized by two higher-order moments only, 
(X~) and (X4). Whether this is enough or not will be 
shown by the experimental results presented in the 
next section. 

The procedure of going to better approximations by 
considering higher-order moments has been described 
in paper I for the general case. For the case under con- 
sideration it leads to the following result: 

R(X)= R~(X) . P(XI,X2) . Pv(Xa) (2) 

where Re(X) is the Gaussian approximation (1). The 
explicit expressions of the polynomials P(X~,X2) and 
Pv(Xa) are obtained by adjusting the coefficients of an 
expansion in Hermite polynomials. In this way one 
obtains for P(Xa,)(2) the expression: 

P(X~,X2)= 1-((Xa~)/Z)M~t(M~X~ + M~2X2) 
+((X31)/6) (MI~X~ + M12)(2) 3 . (3) 

By taking into account only the contribution to (X~) 
due to the asymmetry of the thermal-neutron pulse one 
has (X3)=Q3(ta)/T~ (other contributions come from 
the variation of the incident-neutron spectrum over the 
resolution range and from the wavelength dependence 
of the absorption in the detector, but these may be 
shown to be less important). 

The expression of Pv(X3) is obtained in the form: 

Pv(Xa)= 1 - (z-~) ( 3 -  M~3(X43)) ( 3 -  6M33X3 z 
2 4 + Ma3Xa) 

where (Xa 4) is given by the expression: 

( X 4 )  4 --4 4 =kio(t  1 (Zo~ -Jl- ( t l  1 --]- L 2  I ) 4 ( z 4 )  --] - t24(z4~ 
+ 6(Li- 1 + Lz ')Z(z~)(L; 2(z~)+ Lr 2(z~)) 
+ 6LF Z(z~)L; 2(z~)]. 

(4) 

3. Experiment 
Method 

The method of scanning through R(X) with the aid of 
Bragg reflexion from perfect single crystals (Dietrich 
& Als-Nielsen, 1966) has been used in the measure- 
ments. The intensity of the neutrons diffracted by a 
perfect crystal is I(Q) ~ R ( Q 0 -  Q), where Qo = - 2rc~, 

being the reciprocal-lattice vector corresponding to 
the measured Bragg spot. If the angular deviations 
from the Bragg position in the horizontal (scattering) 
and vertical planes are denoted by q~ and ~u respectively, 
and the deviation from the mean time-of-flight To by 
T - T o ,  then the components of the vector X =  Q 0 - Q  
are: XI=Qo(T-To)/To, X 2 =  Q0tp and .¥3 = Q0~t. There- 
fore, the dependence of the scattered intensity on 

Qo 
(A -1) 

Table 1. Measured and computed data on the covariance matrix {(Xi.,gj)} 

(x~) 
(A-2) 

meas.  comp. 

Bragg angle -42.5 °, perfect Si sample, orders of reflexion 1 to 5. 

2"0 9-3E- 5 9"3E- 5 
8"0 6"6E- 3 5.9E- 3 

10-0 1-2E-2 1.3E-2 
6"0 2"2E- 3 2"2E-- 3 

meas.  comp. meas. comp. meas. comp. 

6.3E-5 6.3E-5 - 5 .7E-5  -5 .2E-5  1.1E-3 
1-0E- 3 1.0E- 3 - 6.0E- 4 - 8.4E- 4 1.8E- 2 
1-6E-3 1-6E-3 --1.0E--3 -1 -3E-3  2-7E-2 
5"6E-4 5.6E-4 -3"9E-4  - 4 . 7 E - 4  1.0E-2 

I((X,X~)}I 1'2 
(A-3) 

meas. comp. 

l ' l E - 3  1-7E-6 1"8E-6 
1"8E-2 3"4E-4 3-0E-4 
2-7E-2 7"2E-4 7.1E-4 
1-0E-2 l ' l E - 4  1.0E-a 
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T--To, 9 and V corresponds to scans through R(X) 
along three reciprocally perpendicular directions in 
Q-space. The situation is simpler than in conventional 
diffraction, where the directions corresponding to the 
0 and 9 scans are not perpendicular. 

Results 
Time-of-flight spectra of neutrons diffracted by the 

(nnn) planes of a perfect Si sample were measured for 
different deviation angles 9 and V [the sample was a 
thin slab of 3.5 cm diameter with (111) planes parallel 
to the surface, kindly supplied by Dr B. Chalupa]. The 
two-dimensional arrays of data were analysed to extract 
corrected sample moments of order up to four. The 
following data have been compared with calculations: 
(a) the second-order moments (X~Xj); (b) the scans 
along X~,Xz and X3; and (c) the contours at 0.5 level of 
the resolution function in the planes X~,Xz and X~,X3. 

The experimental and computed data on the second- 
order moments for a Bragg angle of -42 .5  ° are given 
in Table 1. The last two entries in Table 1 are the 
measured and computed values of the square root of 
the covariance-matrix determinant, a quantity which 
is proportional to the resolution volume in Q space. It 
is worth mentioning the fairly good agreement between 
the measured and computed figures in Table 1 for a 
resolution volume variation of almost three orders of 
magnitude. This is essentially due to the proper de- 
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Fig. 1. Scattered neutron intensity corresponding to scans 

through the resolution function along )(1, )(2 and X3, for 
0n=60 ° and Qo=8 A -1 (reflexion 444 from the perfect Si 
crystal). Broken lines - Gaussian approximation, full lines - 
higher-order moments included. Except for normalization 
to area, calculated curves are not adjusted to the experi- 
mental points. 
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Fig. 2. Experimental and computed contours at 0"5 level of the 
TOF resolution function in the X1X2 plane. Note the dif- 
ferent scales for different Q0 values. 

scription of the spatial effects. Note that there were no 
adjustable parameters in the computation: the geom- 
etry of the experiment was known, and the time dis- 
persion of the neutron pulse was determined separately 
as described in § 1. It is well known that in order to 
fit to experiment the expressions given by the usual 
computation technique operating with angular distri- 
butions only, one has to introduce 'effective values' of 
the parameters involved, which often differ consider- 
ably from the actual values. 

To visualize the actual shape of the resolution func- 
tion the scans along )(1, X2 and X3 are presented in Fig. 
1 for one of the measured Bragg spots. The broken 
curves represent the Gaussian approximation. The 
full curves were computed according to relation (2) 
which includes higher-order moments. A constant 
value of the third-order moment (t  3) was assumed for 
the sake of simplicity: ( t 3 )=r ] .  The results in Fig. 1 
give a positive answer to the question whether the con- 
sideration of only two of the higher-order moments 
suffices for describing the observed deviations from the 
Gaussian shape. 

The half-maximum contours are presented in Figs. 
2 and 3. The normal approximation ellipses are shown 
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by broken lines. The full curves are calculated by in- 
cluding higher-order moments (<X3~> alone for Fig. 
2 and both <X~> and <X 4> for Fig. 3). The improve- 
ment of the agreement between experimental and 
calculated contours when going beyond the normal 
approximation is particularly impressive for the data 
referring to the X:, X3 plane. The consideration of the 
fourth-order moment (X 4> turns out to be quite im- 
portant for reproducing the observed contours in this 
plane. The full curves in Fig. 3 illustrate the situation 
and give an idea of the potentialities of the computa- 
tion method. 

Conclusions 

The experimental check shows that the calculations 
reported in this series of papers give a fairly adequate 
description of reality. The major features of the resolu- 
tion function are reproduced by the normal approxima- 
tion alone, while details of shape are described by the 
improved formulae discussed in this paper. Whether 
these details are relevant or not depends on the physical 
problem. For instance, the resolution-function depend- 
ence on Xa is not essential, as a rule, in the true diffrac- 
tion case, but it is important for the quasielastic 
scattering. For the case of the time-of-flight diffraction 
on complex structures, such as the substances of inter- 
est for biology, the detailed knowledge of the resolu- 
tion function with respect to all its variables is antici- 
pated to be of particular interest. 

We are much indebted to our colleagues Z. Gheor- 
ghiu, D. Korneev and R. Kula for experimental 
assistance. 
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